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SUMMARY

A direct numerical scheme is developed to study the temporal ampli®cation of a 2D disturbance in plane
Poiseuille ¯ow. The transient non-linear Navier±Stokes equations are applied in a region of wavelength moving
with the wave propagation speed. The complex amplitude involved in the perturbation functions is considered as
the initial input of the non-linear stability equations. In this study a fully implicit ®nite difference scheme with
®ve points in the ¯ow direction and three points in the normal direction is developed so that numerical simulation
of the ampli®cation of a two-dimensional temporal disturbance in plane Poiseuille ¯ow can be investigated. The
growth and decay of the disturbance with time are presented and neutral stability curves which are in good
agreement with existing solutions can be determined. The critical conditions as a function of the amplitude A0 of
the disturbance are presented. Fixing the wavelength, the Navier±Stokes equations are solved up to Re� 10,000 a
friction factor increasing with Reynolds number is observed. The 2D non-linear behaviour of the streamfunction,
vorticity and velocity components at Re� 10,000 are also exhibited. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 443±457 (1998).
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1. INTRODUCTION

Although the mathematical theory of the problem of the stability of plane Poiseuille ¯ow to small

disturbances for the Orr±Sommerfeld equation has been well developed for many years, the physical

mechanism behind the process of instability has received relatively little attention and still remains

unclear. In fact, there are a considerable number of phenomena concerning the stability of plane

Poiseuille ¯ow which cannot be completely explained by means of the equation of linear

hydrodynamic stability. Thus it is interesting and necessary to treat the discrepancy between the

results of linear hydrodynamic stability theory and the experimental results, which are non-linear by

nature, with regard to the breakdown of laminar ¯ow. Therefore the present study intends to develop

a direct numerical scheme to solve the complete time-dependent non-linear Navier±Stokes equations

for the stability of plane Poiseuille ¯ow.
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Classical Orr±Sommerfeld theory deals with the stability of linear Tollmien±Schlichting (T±S)

waves with a de®nite wave number or frequency at a given Reynolds number. Thoms1 solved earlier

theoretical work and obtained a critical Reynolds number Rec of about 3853�33, where Re is based on

the mean velocity and the channel half-height. Orszag2 investigated the linear stability of the

temporal Orr±Sommerfeld eigenmodes and predicted the critical Reynolds number to be 3848�15.

Grosch and Salwen3 integrated the linearized equations though one period of oscillation. Herbert4

carried out an energy analysis for small modulation amplitudes. He inspected the energy transfer

process in the thin shear layer near the wall and emphasized the importance of the interaction of the

unsteady portion of the mean ¯ow with the disturbance. Hall5 investigated the stability characteristics

of oscillatory plane Poiseuille ¯ow for high-frequency modulations and concluded that the high-

frequency oscillations have a slightly destabilizing effect. Von Kerczek6 accomplished a perturbation

analysis of the linear equations about the critical Reynolds number and discovered that the

modulation frequencies stabilize the ¯ow. Singer et al.7 studied the effect of ¯ow oscillation on the

stability of plane channel ¯ow via numerical simulation. They found that the maximum growth rates

occur when the instantaneous velocity pro®le has large regions of positive curvature.

Fasel8 proposed an implicit ®nite difference scheme with a three-point difference for the time

derivative and central differences for space derivatives to investigate the stability of a semi-in®nite

¯at plate producing Tollmien±Schlichting waves. Moreover, Fasel and Bestek9 investigated the non-

linear effects of spatial disturbance ampli®cation in plane Poiseuille ¯ow by the same numerical

method. Orszag and Kells10 also proposed the direct numerical solution of the three-dimensional

time-dependent Navier±Stokes equations for the evolution of ®nite amplitude disturbance by spectral

methods.

On the other hand, Nishioka et al.11 performed experiments in a laminar plane Poiseuille ¯ow with

delay-critical Reynolds number Re� 5333�33, where Re � Umh=n. They had to reduce the

background turbulence level to less than 0�05%, because instabilities were obtained at lower

Reynolds numbers at larger disturbance levels. Recent experiments on plane Poiseuille ¯ow, such as

those by Carlson et al.12 and Alavyoon et al.,13 have shown that the Reynolds number of the

experimental transition is much lower than the theoretical prediction for instability in plane Poiseuille

¯ow. This implies that the disturbances can grow below the critical Reynolds number of linear theory

provided that their amplitudes lie above some threshold value. It seems necessary to undertake also a

non-linear analysis for subcritical Reynolds numbers.

In the present paper a direct numerical scheme is applied to study the temporal ampli®cation of a

two-dimensional disturbance in plane Poiseuille ¯ow. The transient non-linear Navier±Stokes

equations are applied in a region of wavelength moving with the wave propagation speed. In this

study a fully implicit ®nite difference scheme with ®ve points in the ¯ow direction and three points in

the normal direction is developed. It is expected that the critical conditions marking the onset of T±S

waves obtained by the present numerical scheme can be compared with existing solutions of linear

stability theory. By ®xing the wavelength and increasing the Reynolds number, the non-linear

disturbance solution with ®nite amplitudes can be obtained to study the non-linear ¯ow

characteristics in the supercritical regime. The critical conditions for the amplitude of various

disturbance levels are also studied.

2. THEORETICAL ANALYSIS

Consider a fully developed ¯ow in a parallel plate channel with a gap 2h. The dimensional velocities

for the basic ¯ow are

ûb � 3
2

Um�1ÿ ŷ2=h2�; v̂b � 0; �1�
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where Um is the mean velocity of the basic ¯ow and the superscript `hat' denotes a dimensional

variable. When the Reynolds number Re � Umh=n is higher than a certain value, two-dimensional

T±S waves may be generated and propagated along the ¯ow direction as shown in Figure 1. Viewing

the wave motion from a ®xed point on the ground (i.e. x̂±ŷ co-ordinates), the ¯ow appears unsteady to

a stationary observer. However, the ¯ow is steady to an observer located on a frame moving with the

wave propagation speed cr. Consequently, the co-ordinate transformations between the X̂ ±Ŷ and x̂±ŷ

frames are X̂ � x̂ÿ cr t̂ and Ŷ � ŷ.

2.1. Perturbation equations

The perturbation quantities are superimposed on the basic ¯ow quantities as

û � ûb�ŷ� � û0�x̂; ŷ; t̂�; v̂ � v̂0�x̂; ŷ; t̂�; p̂ � p̂b�x̂� � p̂0�x̂; ŷ; t̂�: �2�

The above perturbation quantities are considered as functions of space variables x̂; ŷ and time t̂. By

substituting the resultant velocity and pressure into the conservation equations for mass and

momentum and subtracting the equations for the basic ¯ow quantities, we obtain the perturbation

equations

@û0

@x̂
� @v̂

0

@ŷ
� 0; �3�

@û0

@t̂
� ûb

@û0
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� �
; �4�
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� û0
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@x̂
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@ŷ
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@ŷ
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@2v̂0
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2v̂0

@ŷ2

� �
: �5�

Then, introducing the dimensionless variables and parameters

x̂ � �h�x; ŷ � �h�y; û0 � �Um�u; v̂0 � �Um�v;
ûb � �Um�ub; t̂ � �h=Um�t; p̂0 � �rU 2

m�p; Re � Umh=v;

Figure 1. Schematic diagram of physical system
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the dimensionless perturbation equations become
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� @v
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� 0; �6�
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� �
; �8�

where

ub � 3
2
�1ÿ y2�: �9�

Subsequently, we de®ne the vorticity o and streamfunction c as

o � @u
@y
ÿ @v
@x

�10�

and

u � @c
@y
; v � ÿ @c

@x
: �11�

For the numerical solution the Navier±Stokes equations are transformed to the vorticity transport

form by eliminating the pressure terms via a cross-differentiation process as follows:

@o
@t
� ub

@o
@x
ÿ @c
@x

d2ub

dy2
� @c
@y

@o
@x
ÿ @c
@x

@o
@y
� 1

Re

@2o
@x2
� @

2o
@y2

� �
; �12�

where

o � @
2c
@x2
� @

2c
@y2

;
d2ub

dy2
� d

dy

dub

dy

� �
� d

dy
�ÿ3y� � ÿ3:

Moreover, transforming the ®xed co-ordinates �x; y; t� to moving co-ordinates �X ; Y ; t�, i.e. letting

X � xÿ crt, one obtains the following equations in the X±Y plane for the time-dependent non-linear

effect:

@o
@t
� �ub ÿ cr�

@o
@X
� 3

@c
@X
� @c
@Y

@o
@X
ÿ @c
@X

@o
@Y
� 1

Re

@2o
@X2
� @

2o
@Y2

� �
; �13�

@2c
@X2
� @

2c
@Y2
� o: �14�

The numerical computation is then based on (13) and (14) with appropriate initial and boundary

conditions which are speci®ed below in detail. It has been reported from the so-called Squire's

theorem14 that two-dimensional disturbances are always more unstable to plane Poiseuille ¯ow than

three-dimensional ones; thus the present two-dimensional model may be appropriate in this study.

2.2. Initial and boundary conditions

The appropriate initial and boundary conditions of the perturbation quantities are as follows.

Initial conditions. The results obtained from linear stability theory is used for the initial condition.

The neutral stability solutions including fr;fi;Wr and Wi are depicted in Figure 2 for Re� 3853,

a� 1�02 and cr� 0�395642, where the subscripts `r' and `i' denote respectively the real and

imaginary parts of the solution from linear stability theory.15
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The initial conditions of c and o in (13) and (14) can be evaluated as

c�X ; Y ; 0� � A0

N
�fr�Y � cos�aX � ÿ fi�Y � sin�aX ��; �15�

o�X ; Y ; 0� � A0

N
�Wr�Y � cos�aX � ÿWi�Y � sin�aX ��; �16�

where a � 2p=l is the dimensionless wave number, N is the `normalization factor', de®ned as

N � 1

2l

�l
0

�1

ÿ1

�fr�Y � cos�aX � ÿ fi�Y � sin�aX ��2 dY dX

 !1=2

; �17�

and A0 is the initial magnitude of disturbance.

Boundary conditions

@2o
@X 2
� ÿa2o and

@2c
@X 2
� ÿa2c at X � 0;X � l and ÿ 14 Y 4 1; �18a�

o � @
2c
@Y 2

and c � 0 at Y � ÿ1 and 04X 4l �18b�

o � @
2c
@Y 2

and c � 0 at Y � 1 and 04X 4l: �18c�

For determining the growth or decay of the disturbance with time, the root mean square value of

the instantaneous perturbation streamfunction is de®ned as

An �
1

2l

�l
0

�1

ÿ1

�c�X ; Y ; t��2 dY dX

 !1=2

: �19�

Figure 2. Eigenfunctions at a � 1�02, Re� 3853 and cr � 0�395642 used as initial condition for plane Poiseuille ¯ow stability
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For n � 0,

A0 �
1

2l

�l
0

�1

ÿ1

�c�X ; Y ; 0��2 dY dX

 !1=2

is the initial magnitude of disturbance.

3. NUMERICAL METHOD AND SOLUTION

As mentioned above, there are two signi®cant problems remaining to be solved. The ®rst is to search

for appropriate functions fr;fi;Wr and Wi as initial conditions. The second is to develop a numerical

scheme to investigate the transient non-linear stability equations.

3.1. Linear stability equation for initial conditions

We reduce the fourth-order Orr±Sommerfeld equation with non-constant coef®cients to a set of

second-order differential equations

�D2 ÿ a2�Wr � ÿa Re��ub ÿ cr�Wi � 3fi ÿ ciwr�; �20�
�D2 ÿ a2�Wi � a Re��ub ÿ cr�Wr � 3fr ÿ ciwi�; �21�

�D2 ÿ a2�fr � Wr; �22�
�D2 ÿ a2�fi � Wi; �23�

where D denotes d=dY, fr and fi are the real and imaginary parts of amplitude functions of the

perturbation streamfunction respectively and Wr and Wi are the real and imaginary parts of amplitude

functions of the perturbation vorticity respectively. These are functions of Y only.

For simplicity, only half of the gap is taken for computation. The associated boundary conditions

are

fr�1� � fi�1� � f0r�1� � f0i�1� � 0; Wr�1� � f00r �1�; Wi�1� � f00i �1�; �24�
f0r�0� � f0i�0� � 0; W 0r �0� � W 0i �0� � 0: �25�

We let fr�0� � 1 and fi�0� � 0, whereby the eigenfunction is normalized. The boundary conditions

for f are obtained by considering the no-slip and no-suction=blowing conditions. The conditions for

W in (24) are obtained by the de®nition of vorticity. The conditions for W 0 in (25) are obtained by the

symmetry condition.

Equations (20±(23) together with boundary conditions (24) and (25) comprise a system of

algebraic equations which can be written in the form

�A��x� � �B�: �26�

The matrix [A] is function of a; cr; ci and Re; the vector [B] is a non-zero �4� �nÿ 1��-
dimensional array. In solving the eigenvalue problem, one assigns two of these values, say Re and ci,

and guesses the remaining two, say a and cr, and then solves equation (26) by the Gaussian
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elimination method. Next, the eigenvalues ak�1 � ak � Da and ck�1
r � ck

r � Dcr are adjusted by the

two-dimensional secant method16 to determine Da and Dcr, which is described by the equations

fr�0� �
@fr�0�
@a

Da� @fr�0�
@cr

Dcr � 1; �27�

fi�0� �
@fi�0�
@a

Da� @fi�0�
@ci

Dci � 0; �28�

until the conditions fr�0� � 1 and fi�0� � 0 are satis®ed within a prescribed tolerance. It is noted that

on the curve of a versus Re for neutral stability, ci can be assigned a value of zero.

Table I shows the results of the present method with different grid numbers (n� 60, 100, 200) in

comparison with the classical result of Thomas1 for Re� 6666�67, a � 1 ¯ow. It is obvious that the

result for the case n� 200 is quite close to that of Thomas. Therefore a grid number of 400 in the Y-

direction is used for the full gap in the subsequent computation.

3.2. Discretization of transient non-linear N±S equation

The transient non-linear perturbation equation (13) is essentially a mixed parabolic±elliptic

eigenvalue-type differential equation that includes a time-dependent term, convective terms, and

diffusive terms. It is noted that the functions c and o must be self-excited, because there is no `source

term' in (13). In the present study, a Crank±Nicolson scheme with truncation error of O��Dt�2� is used

for time marching. Time steps Dt � 0�01, 0�05 and 0�1 were tested. Finally, Dt � 0�05 (corresponding

to a real time step of about 0�002 s for Re� 10,000 in the present study) was selected by consideration

of both the accuracy of the transient solution and the computation time required to reach the steady

state solution. Note that the selection of Dt is not sensitive to the steady state solution. The time

derivative @o=@t in (13) can be written as

on
i; j ÿ onÿ1

i; j

Dt
� 1

2

@o
@t

� �n

i; j

� @o
@t

� �nÿ1

i; j

" #
: �29�

Table I. Numerical experiment for solution of Orr±Sommerfeld equation in plane
Poiseuille ¯ow (Re� 6666�67, a� 1�0)

No of nodes in Y-direction

Y n � 60 n � 100 n � 200 Thomas1

fr 0�1 0�991894 0�991877 0�991869 0�991868
0�3 0�925735 0�925581 0�925517 0�925497
0�5 0�785872 0�785432 0�785248 0�785190
0�7 0�553009 0�552087 0�551702 0�551578
0�9 0�168899 0�167395 0�166768 0�166567

fi 0�2 ÿ0�000058 ÿ0�000063 ÿ0�000064 ÿ0�000064
0�3 ÿ0�000527 ÿ0�000570 ÿ0�000583 ÿ0�000584
0�5 ÿ0�001497 ÿ0�001621 ÿ0�001658 ÿ0�001662
0�7 ÿ0�003002 ÿ0�003259 ÿ0�003335 ÿ0�003346
0�9 ÿ0�018771 ÿ0�018979 ÿ0�018998 ÿ0�018982

cr 0�354047 0�355490 0�356251 0�356289
ci 0�005061 0�005461 0�005577 0�005611
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It is seen in the convective terms of (13) that the coef®cients ub ÿ cr � @c=@Y of @o=@X are

positive near the centre and negative near the channel wall. To enhance the numerical stability and

yield accurate results, a third-order ®ve-point upwind scheme,17 shown in Figure 3, is employed to

discretize the convective term:

U*
@o
@X

� �
i; j

�U*i; j

ÿoi�2; j � 8oi�1; j ÿ 8oiÿ1; j � oiÿ2; j

12DX

� jU*i; jj
3oi�2; j ÿ 12oi�1; j � 18oi; j ÿ 12oiÿ1; j � 3oiÿ2; j

12DX
; �30�

where U*i; j � ub ÿ cr � @c=@Y . Regarding the X-direction second-order derivative @2o=@X 2, the ®ve-

point central difference scheme is applied. For the Y-direction derivatives the power-law scheme of

Patankar is employed. The calculation was carried out iteratively from upstream to downstream as

shown in Figure 3.

Before the numerical scheme was developed, the three-point power-law scheme of Patanker was

also tested. Owing to the large truncation error in the three-point scheme, which may be greater than

the magnitude of the major stabilizing viscous term �@2o=@X 2 � @2o=@Y 2�=Re in (13), the functions

c and o cannot be self-excited even with large initial magnitudes of c and o. The selection of a

proper discretization scheme is the key to the success of this study.

Since the wave propagation speed cr changes with Re and a, one must correct cr to avoid the shift

of T±S waves during the computation. The correction Dcr is set as

Dcr �
Xnew ÿ Xold

tnew ÿ told

: �31�

By using cubic spline interpolation, one can ®nd the location �Xold; 0� of the maximum perturbation

streamfunction cmax at t � told and the new location �Xnew; 0� at t � tnew. The time interval tnew ÿ told

is selected as 10 times Dt in the present study.

Figure 3. Finite difference scheme
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The local friction factor f Re and the average friction factor f Re in plane Poiseuille ¯ow are

de®ned as

f Re � 8
dub

dY
� @u
@Y

� �
wall

�
24� 8

@2c
@Y 2

����
y�ÿ1

� 24� 8ojY�ÿ1 �lower plate�;

24ÿ 8
@2c
@Y 2

����
Y�1

� 24ÿ 8ojY�1 �upper plate�;

8>>><>>>: �32�

f Re � 1

l

�l
0

f Re dX ; �33�

where Re � Umh=v.

As shown in Table II, a spatial grid test for Re� 5000 and a� 1�02 was carried out. It is seen that

the average friction factor f Re for the 606400 grid deviates from that for the 806400 grid by less

than 0�01% at t � 50 and 0�04% at t � 100. Therefore grid dimensions of 606400 are used

throughout the computation.

4. RESULTS AND DISCUSSION

Taking an initial magnitude of disturbance A0 � 0�001, the full lines in Figure 4 show the effect of Re

on the growth and decay of the disturbance with time. When Re � Rec � 3853, the magnitude of

disturbance is insensitive to the variation in time. When Re � 3900 > Rec, the magnitude grows with

time. In contrast, when Re � 3810 < Rec, the magnitude decays with time. Eliminating the non-

linear terms in (13), the broken lines in Figure 4 show the growth and decay of the disturbance

without the non-linear effect when Re � Rec. It is seen that the non-linear terms have little effect on

the growth and decay of the disturbance when its magnitude is small.

Next, taking initial magnitudes of disturbance A0 � 0�0001, 0�006 and 0�01, the results are shown

in Figure 5. When A0 � 0�0001, the marginal stability curve of the non-linear equation is nearly

coincident with that of the linear ordinary differential equation. The curves of marginal stability for

A0 � 0�006 and 0�01 are shifted from that for A0 � 0�0001. It is seen that the curves of marginal

stability for the various initial magnitudes of disturbance intersect at point B (about Re� 4266,

a� 0�936). The upper branch of the neutral curves above point B for ®nite amplitudes lies in the zone

which is stable to in®nitesimal disturbances, while the lower portion of the neutral curves below point

B for ®nite amplitudes lies inside the unstable zone. The present results are just like those drawn

schematically by Pekeris and Shkoller.18

Table II. Grid test for Re� 5000 and a� 1�02 at t� 50 and 100

Grid size cr An f Re

t� 50 806400 0�392186 0�012941 24�426
606400 0�391895 0�012904 24�424
406400 0�391159 0�012803 24�418
206400 0�388849 0�011453 24�354

t� 100 806400 0�399372 0�017413 24�729
606400 0�398964 0�017298 24�720
406400 0�398474 0�016981 24�698
206400 0�389619 0�013204 24�448
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Figure 6 shows the critical Reynolds number, together with the corresponding wave number and

dimensionless frequency, as a function of the initial magnitude of disturbance. The results are in

agreement with those of Pekeris and Shkoller.18 In fact, the present data may explain why the critical

Reynolds number obtained in the experiments is less than the prediction by linear theory. The non-

linear effect caused by the ®nite initial disturbance destablizes the ¯ow.

In the present study we assume that the wave number a is ®xed once the initial disturbance has

developed. The computation in the post-critical regime keeping a ®xed has also been done for vortex

rolls in a thermal instability problem. It may be interesting to see the development of the friction

factors with the initial input magnitude. Figure 7 shows the time trends of An and f Re=�f Re�0 for

A0� 0�001, 0�01 and 0�05. It is seen that a large initial input produces large initial growth rates for

both An and f Re=�f Re�0. An overshoot of f Re=�f Re�0 is observed for A0 � 0�05 at t � 80, though

no sign of overshoot is found for A0. At t � 2000 all curves of An and f Re=� f Re�0 meet

Figure 4. Ampli®cation and decay of streamfunction

Figure 5. Comparison of curves of marginal stability for plane Poiseuille ¯ow
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asymptotically. A large initial input leads to the ®nal asymptotic value being approached earlier than

with a small initial input. This suggests the use of larger A0 for the computation of f Re=�f Re�0 in the

post-critical regime. In the present study, A0 � 0�01 was used for the evaluation of f Re=�f Re�0 in

Figure 10.

Figure 8 depicts the streamfunction of disturbance, streamlines, vorticity and velocity vector for

Re� 10,000, a� 1�02 and cr � 0�566068. It is seen that the streamfunction of disturbance in Figure

8(a) is no longer sinusoidal along the ¯ow direction. The streamlines in Figure 8(b) combine the main

¯ow and the perturbation velocity. It is seen in the plots of streamlines, vorticity and velocity vector

in Figures 8(b)±8(d) that a wavy motion occurs in the ¯ow direction. It is observed that weak reversed

¯ows of pitch l appear alternately at the upper and lower walls in the plot of streamlines. In the plot

of vorticity, oval-shaped constant-vorticity lines are also seen near the region of reversed ¯ow.

To the authors' knowledge, the distribution of friction factor indicating the ¯ow characteristics

along the lower and upper plates with non-linear T±S waves in plane Poiseuille ¯ow has not yet been

reported. If one closely examines the structure of vorticity contours within a wavelength, as shown in

Figure 9, the ¯ow reversal causes a negative value of f Re on the upper plate for X � 0±1�8 and 5�8±

6�2 and on the lower plate for X� 2�74±4�8. The maximum value of f Re on the upper plate occurs at

X� 4�8, near the front of the upper ¯ow reversal, while f Re approximately equals zero on the lower

Figure 7. Time trends of An and f Re=�f Re�0 for Re� 10,000, a� 1�02 and various A0

Figure 6. Critical conditions: Rec, a and br �� acr� as functions of A0
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Figure 8. (a) Streamfunction of disturbance, (b) streamlines, (c) vorticity and (d) velocity vector in ¯ow ®eld for Re� 10,000,
a� 1�02 and cr � 0.566068

Figure 9. Local friction factor for a � 1�02 within a wavelength, contrasted with vorticity contours for Re� 10,000
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plate. At this position of maximum f Re the velocity distribution also shows a large velocity gradient

near the wall, as observed in Figure 8(d). It is seen that the curve for the lower plate is identical to but

shifted by l=2 from that for the upper plate shown in Figure 9.

Although positive and negative values are seen in the local distribution of friction factor in Figure

9, the average friction factor may increase with increasing Re. Figure 10 shows the computed

f Re=�f Re�0 and dimensionless frequency br for A0 � 0�0001;Re > Rec (i.e. 3853) and wave

numbers a � 0�99, 1�02 and 1�05. The friction factor ratio increases rapidly and the dimensionless

frequency increases slowly with increasing Re. The increases in friction factor ratio and

dimensionless frequency are almost linear for Re� 4500±10,000. It is seen that the friction factor

ratios and dimensionless frequencies for a� 0�99 and 1�05 are within � 10% of those for a� 1�02.

This ®gure displays the characteristics of plane Poiseuille ¯ow in laminar±turbulent transition.

5. CONCLUDING REMARKS

A direct numerical scheme is successfully developed to study the temporal ampli®cation of a 2D

disturbance in plane Poiseuille ¯ow. The utilization of a ®ve-point ®nite difference formula in the X-

direction, which effectively eliminates the stabilizing truncation error in a three-point scheme, is the

key to the success of this study.

By varying the initial amplitude of disturbance from A0 � 0�0001 to 0�01, the results of the present

simulation show that the critical Rec decreases and the wave number a and the dimensionless

frequency br � acr increase with increasing A0. The predicted results agree with those of Pekeris and

Shkoller.18

In the post-critical regime a wavy motion along the ¯ow direction and ¯ow reversal at the upper

and lower plates are observed. Weak reversed ¯ows of pitch l appear alternatively at the upper and

lower walls. The reversed ¯ow causes a negative value of friction factor.

Although positive and negative values are seen in the local distribution of friction factor, the

average friction factor increases with increasing Reynolds number. In the computation of friction

factor in the post-critical regime the value of a is kept unchanged. It may also be interesting to see the

effect of a on the average friction factor. It is found that the friction factors for a� 0�99 and 1�05 are

within � 10% of that for a � 1�02.

Figure 10. Ampli®cation of average friction factor and dimensionless frequency for Re > Rec and various wave numbers with
�f Re�0 � 24 and A0 � 0�0001
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APPENDIX: NOMENCLATURE

An root mean square value of perturbation streamfunction

A0 initial magnitude of disturbance

ci ampli®cation factor

cr dimensionless wave propagation speed, ĉr=Um

f Re local friction factor

f Re average friction factor

h half of distance between two parallel plates (m)

n Y-direction grid index

N normalization factor de®ned in (17)

p dimensionless perturbation pressure

Re Reynolds number, Umh=n
t dimensionless time

u; v dimensionless streamwise and normal perturbation velocities

ub dimensionless streamwise basic velocity

Um streamwise mean velocity (m s71)

W amplitude function of perturbation vorticity

x; y dimensionless streamwise and normal stationary co-ordinates

X ; Y dimensionless streamwise and normal co-ordinates moving with wave velocity cr in

streamwise direction

Greek letters

a wave number, 2p=l
br dimensionless frequency, acr

D difference

l dimensionless wavelength, 2p=a
n kinematic viscosity of ¯uid (m2 s71)

f amplitude function of perturbation streamfunction

c dimensionless perturbation streamfunction

o dimensionless perturbation vorticity

Superscripts

k iteration index

n number of time step

( )0 perturbation quantity

� ^ � dimensional quantity

Subscripts

b basic ¯ow quantity

c critical condition

i imaginary part

m mean ¯ow

n time step index

r real part

0 initial condition
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